Wednesday 7 November 2018

Movendo média stata tempo série


Médias móveis Médias móveis Com conjuntos de dados convencionais, o valor médio é frequentemente o primeiro, e um dos mais úteis, estatísticas de resumo a calcular. Quando os dados estão na forma de uma série temporal, a média da série é uma medida útil, mas não reflete a natureza dinâmica dos dados. Os valores médios calculados em períodos em curto, anteriores ao período atual ou centrados no período atual, são freqüentemente mais úteis. Como esses valores médios variam ou se movem, à medida que o período atual se move a partir do tempo t 2, t 3, etc., eles são conhecidos como médias móveis (Mas). Uma média móvel simples é (tipicamente) a média não ponderada de k valores anteriores. Uma média móvel exponencialmente ponderada é essencialmente a mesma que uma média móvel simples, mas com contribuições para a média ponderada pela sua proximidade com o tempo atual. Como não existe uma, mas toda uma série de médias móveis para qualquer série, o conjunto de Mas pode ser plotado em gráficos, analisado como uma série e usado na modelagem e previsão. Uma gama de modelos pode ser construída usando médias móveis, e estes são conhecidos como modelos MA. Se tais modelos forem combinados com modelos autorregressivos (AR), os modelos compostos resultantes são conhecidos como modelos ARMA ou ARIMA (o I é para integrado). Médias móveis simples Uma vez que uma série temporal pode ser considerada como um conjunto de valores, t 1,2,3,4, n a média destes valores pode ser calculada. Se assumimos que n é bastante grande, e selecionamos um inteiro k que é muito menor que n. Podemos calcular um conjunto de médias de bloco, ou médias móveis simples (de ordem k): Cada medida representa a média dos valores de dados sobre um intervalo de k observações. Observe que o primeiro MA possível de ordem k gt0 é aquele para t k. De forma mais geral, podemos descartar o subíndice extra nas expressões acima e escrever: Isto indica que a média estimada no tempo t é a média simples do valor observado no instante t e os intervalos de tempo anteriores k-1. Se forem aplicados pesos que diminuam a contribuição de observações que estão mais distantes no tempo, a média móvel é dita ser suavizada exponencialmente. As médias móveis são frequentemente utilizadas como uma forma de previsão, pelo que o valor estimado para uma série no tempo t 1, S t 1. É tomado como o MA para o período até e incluindo o tempo t. por exemplo. A estimativa de hoje é baseada em uma média de valores anteriores registrados até e inclusive ontem (para dados diários). As médias móveis simples podem ser vistas como uma forma de suavização. No exemplo ilustrado abaixo, o conjunto de dados sobre poluição atmosférica mostrado na introdução deste tópico foi aumentado por uma linha de média móvel de 7 dias, mostrada aqui em vermelho. Como pode ser visto, a linha de MA suaviza os picos e depressões nos dados e pode ser muito útil na identificação de tendências. A fórmula de cálculo de referência padrão significa que os primeiros pontos de dados k-1 não têm valor de MA, mas depois disso os cálculos se estendem até o ponto de dados final da série. Uma razão para calcular médias móveis simples da maneira descrita é que ela permite que os valores sejam calculados para todos os intervalos de tempo desde o tempo tk até o presente, e Como uma nova medição é obtida para o tempo t 1, o MA para o tempo t 1 pode ser adicionado ao conjunto já calculado. Isso fornece um procedimento simples para conjuntos de dados dinâmicos. No entanto, existem alguns problemas com esta abordagem. É razoável argumentar que o valor médio nos últimos 3 períodos, digamos, deve ser localizado no tempo t -1, não no tempo t. E para um MA sobre um número par de períodos, talvez ele deve ser localizado no ponto médio entre dois intervalos de tempo. Uma solução para esse problema é usar cálculos centralizados de MA, nos quais o MA no tempo t é a média de um conjunto simétrico de valores em torno de t. Apesar de seus méritos óbvios, esta abordagem não é geralmente usada porque exige que os dados estejam disponíveis para eventos futuros, o que pode não ser o caso. Nos casos em que a análise é inteiramente de uma série existente, o uso de Mas centralizado pode ser preferível. As médias móveis simples podem ser consideradas como uma forma de suavização, removendo alguns componentes de alta freqüência de uma série de tempo e destacando (mas não removendo) as tendências de forma semelhante à noção geral de filtragem digital. De fato, as médias móveis são uma forma de filtro linear. É possível aplicar um cálculo da média móvel a uma série que já tenha sido suavizada, isto é, suavizar ou filtrar uma série já suavizada. Por exemplo, com uma média móvel de ordem 2, podemos considerá-la como sendo calculada usando pesos, então a MA em x 2 0,5 x 1 0,5 x 2. Da mesma forma, a MA em x 3 0,5 x 2 0,5 x 3. Se nós Aplicar um segundo nível de suavização ou filtragem, temos 0,5 x 2 0,5 x 3 0,5 (0,5 x 1 0,5 x 2) 0,5 (0,5 x 2 0,5 x 3) 0,25 x 1 0,5 x 2 0,25 x 3 ou seja, a filtragem de 2 estádios Processo (ou convolução) produziu uma média móvel simétrica ponderada variável, com pesos. Várias circunvoluções podem produzir médias móveis ponderadas bastante complexas, algumas das quais foram encontradas de uso particular em campos especializados, como nos cálculos de seguros de vida. As médias móveis podem ser usadas para remover efeitos periódicos se computadas com o comprimento da periodicidade como um conhecido. Por exemplo, com os dados mensais as variações sazonais podem frequentemente ser removidas (se este for o objetivo) aplicando uma média móvel simétrica de 12 meses com todos os meses ponderados igualmente, exceto o primeiro eo último que são ponderados por 12. Isto é porque haverá Ser de 13 meses no modelo simétrico (tempo atual, t. - 6 meses). O total é dividido por 12. Procedimentos semelhantes podem ser adotados para qualquer periodicidade bem definida. Médias móveis exponencialmente ponderadas (EWMA) Com a fórmula da média móvel simples: todas as observações são igualmente ponderadas. Se chamássemos esses pesos iguais, alfa t. Cada um dos k pesos seria igual a 1 k. Então a soma dos pesos seria 1, ea fórmula seria: Já vimos que múltiplas aplicações desse processo resultam em pesos variando. Com médias móveis ponderadas exponencialmente, a contribuição para o valor médio das observações que são mais removidas no tempo é deliberada reduzida, enfatizando os eventos mais recentes (locais). Essencialmente um parâmetro de suavização, 0lt alfa lt1, é introduzido, ea fórmula revisada para: Uma versão simétrica desta fórmula seria da forma: Se os pesos no modelo simétrico são selecionados como os termos dos termos da expansão binomial, (1212) 2q. Eles somarão a 1, e quando q se tornar grande, aproximar-se-á da distribuição Normal. Esta é uma forma de ponderação do kernel, com o Binomial agindo como a função do kernel. A convolução de dois estágios descrita na subseção anterior é precisamente esta disposição, com q 1, produzindo os pesos. Em suavização exponencial é necessário usar um conjunto de pesos que somam 1 e que reduzem em tamanho geometricamente. Os pesos usados ​​são tipicamente da forma: Para mostrar que esses pesos somam 1, considere a expansão de 1 como uma série. Podemos escrever e expandir a expressão entre parênteses usando a fórmula binomial (1-x) p. Onde x (1-) e p -1, o que dá: Isso então fornece uma forma de média móvel ponderada da forma: Esta soma pode ser escrita como uma relação de recorrência: o que simplifica muito a computação e evita o problema de que o regime de ponderação Deve ser estritamente infinito para os pesos a somar a 1 (para pequenos valores de alfa, isso normalmente não é o caso). A notação utilizada por diferentes autores varia. Alguns usam a letra S para indicar que a fórmula é essencialmente uma variável suavizada e escrevem: enquanto a literatura da teoria de controle usa freqüentemente Z em vez de S para os valores exponencialmente ponderados ou suavizados (ver, por exemplo, Lucas e Saccucci, 1990, LUC1 , Eo site do NIST para mais detalhes e exemplos trabalhados). As fórmulas citadas acima derivam do trabalho de Roberts (1959, ROB1), mas Hunter (1986, HUN1) usa uma expressão da forma: que pode ser mais apropriada para uso em alguns procedimentos de controle. Com alfa 1, a estimativa média é simplesmente o seu valor medido (ou o valor do item de dados anterior). Com 0,5 a estimativa é a média móvel simples das medições atuais e anteriores. Nos modelos de previsão, o valor, S t. É freqüentemente usado como estimativa ou valor de previsão para o próximo período de tempo, ou seja, como a estimativa para x no tempo t 1. Assim, temos: Isto mostra que o valor da previsão no tempo t 1 é uma combinação da média móvel exponencialmente ponderada anterior Mais um componente que representa o erro de previsão ponderado, epsilon. No tempo t. Supondo que uma série temporal é dada e uma previsão é necessária, um valor para alfa é necessário. Isto pode ser estimado a partir dos dados existentes, avaliando a soma dos erros de predição quadrados obtidos com valores variáveis ​​de alfa para cada t 2,3. Definindo a primeira estimativa como o primeiro valor de dados observado, x 1. Em aplicações de controle, o valor de alfa é importante na medida em que é usado na determinação dos limites de controle superior e inferior, e afeta o comprimento médio de execução (ARL) esperado Antes que esses limites de controle sejam quebrados (sob o pressuposto de que as séries temporais representam um conjunto de variáveis ​​independentes, aleatoriamente distribuídas, com variância comum). Nestas circunstâncias, a variância da estatística de controlo é (Lucas e Saccucci, 1990): Os limites de controlo são usualmente definidos como múltiplos fixos desta variância assintótica, e. - 3 vezes o desvio padrão. Se alfa 0,25, por exemplo, e os dados sendo monitorados forem assumidos como tendo uma distribuição Normal, N (0,1), quando em controle, os limites de controle serão - 1,134 e o processo atingirá um ou outro limite em 500 passos na média. Lucas e Saccucci (1990 LUC1) derivam os ARLs para uma ampla gama de valores alfa e sob várias suposições usando procedimentos de Cadeia de Markov. Eles tabulam os resultados, incluindo o fornecimento de ARLs quando a média do processo de controle foi deslocada por algum múltiplo do desvio padrão. Por exemplo, com um deslocamento 0,5 com alfa 0,25 o ARL é menos de 50 etapas de tempo. As abordagens descritas acima são conhecidas como suavização exponencial única. Uma vez que os procedimentos são aplicados uma vez à série temporal e, em seguida, análises ou processos de controlo são realizados no conjunto de dados suavizado resultante. Se o conjunto de dados incluir uma tendência e / ou componentes sazonais, a suavização exponencial de dois ou três estágios pode ser aplicada como um meio de remover (explicitamente modelar) esses efeitos (veja a seção sobre Previsão abaixo eo exemplo trabalhado pelo NIST). CHA1 Chatfield C (1975) A Análise da Série de Tempos: Teoria e Prática. Chapman e Hall, Londres HUN1 Hunter J S (1986) A média móvel exponencialmente ponderada. J of Quality Technology, 18, 203-210 LUC1 Lucas J M, Saccucci M S (1990) Esquemas de controlo da média móvel ponderada exponencialmente: propriedades e melhoramentos. Technometrics, 32 (1), 1-12 ROB1 Roberts S W (1959) Testes de gráficos de controle baseados em médias móveis geométricas. Modelos ARIMA (p, d, q): Os modelos ARIMA são, em teoria, a classe mais geral de modelos para prever uma série de tempo que pode ser feita para ser 8220stationary8221 por diferenciação (Se necessário), talvez em conjunção com transformações não-lineares, tais como logging ou deflação (se necessário). Uma variável aleatória que é uma série de tempo é estacionária se suas propriedades estatísticas são todas constantes ao longo do tempo. Uma série estacionária não tem tendência, suas variações em torno de sua média têm uma amplitude constante, e ele se move de forma consistente. Isto é, os seus padrões de tempo aleatório a curto prazo têm sempre o mesmo aspecto num sentido estatístico. Esta última condição significa que suas autocorrelações (correlações com seus próprios desvios prévios em relação à média) permanecem constantes ao longo do tempo, ou de forma equivalente, que seu espectro de poder permanece constante ao longo do tempo. Uma variável aleatória desta forma pode ser vista (como de costume) como uma combinação de sinal e ruído, eo sinal (se for aparente) poderia ser um padrão de reversão média rápida ou lenta, ou oscilação sinusoidal, ou rápida alternância no sinal , E poderia também ter uma componente sazonal. Um modelo ARIMA pode ser visto como um 8220filter8221 que tenta separar o sinal do ruído, e o sinal é então extrapolado para o futuro para obter previsões. A equação de previsão de ARIMA para uma série de tempo estacionária é uma equação linear (isto é, tipo de regressão) na qual os preditores consistem em atrasos da variável dependente e / ou atrasos dos erros de previsão. Ou seja: Valor previsto de Y uma constante e / ou uma soma ponderada de um ou mais valores recentes de Y e / ou uma soma ponderada de um ou mais valores recentes dos erros. Se os preditores consistem apenas em valores defasados ​​de Y., é um modelo autoregressivo puro (8220 auto-regressado8221), que é apenas um caso especial de um modelo de regressão e que poderia ser equipado com software de regressão padrão. Por exemplo, um modelo autoregressivo de primeira ordem (8220AR (1) 8221) para Y é um modelo de regressão simples no qual a variável independente é apenas Y retardada por um período (LAG (Y, 1) em Statgraphics ou YLAG1 em RegressIt). Se alguns dos preditores são defasagens dos erros, um modelo ARIMA não é um modelo de regressão linear, porque não há maneira de especificar o erro 8222 como uma variável independente: os erros devem ser calculados em base período a período Quando o modelo é ajustado aos dados. Do ponto de vista técnico, o problema com o uso de erros defasados ​​como preditores é que as previsões do modelo não são funções lineares dos coeficientes. Mesmo que sejam funções lineares dos dados passados. Portanto, os coeficientes em modelos ARIMA que incluem erros retardados devem ser estimados por métodos de otimização não-lineares (8220hill-climbing8221) ao invés de apenas resolver um sistema de equações. O acrônimo ARIMA significa Auto-Regressive Integrated Moving Average. Lags das séries estacionalizadas na equação de previsão são chamados de termos quotautorregressivos, os atrasos dos erros de previsão são chamados de quotmoving termos médios e uma série de tempo que precisa ser diferenciada para ser estacionária é dito ser uma versão quotintegrada de uma série estacionária. Modelos de Random-walk e tendência aleatória, modelos autorregressivos e modelos de suavização exponencial são casos especiais de modelos ARIMA. Um modelo ARIMA não sazonal é classificado como um modelo quotARIMA (p, d, q) quot, onde: p é o número de termos autorregressivos, d é o número de diferenças não sazonais necessárias para a estacionaridade e q é o número de erros de previsão defasados ​​em A equação de predição. A equação de previsão é construída como se segue. Em primeiro lugar, vamos dizer a d diferença de Y. o que significa: Note que a segunda diferença de Y (o caso d2) não é a diferença de 2 períodos atrás. Pelo contrário, é a primeira diferença de primeira diferença. Que é o análogo discreto de uma segunda derivada, isto é, a aceleração local da série em vez da sua tendência local. Em termos de y. A equação de previsão geral é: Aqui os parâmetros da média móvel (9528217s) são definidos de modo que seus sinais sejam negativos na equação, seguindo a convenção introduzida por Box e Jenkins. Alguns autores e software (incluindo a linguagem de programação R) definem-los para que eles tenham mais sinais ao invés. Quando números reais são conectados à equação, não há ambigüidade, mas é importante saber qual convenção seu software usa quando está lendo a saída. Muitas vezes os parâmetros são indicados por AR (1), AR (2), 8230 e MA (1), MA (2), 8230, etc. Para identificar o modelo ARIMA apropriado para Y. você começa por determinar a ordem de diferenciação (D) a necessidade de estacionarizar a série e remover as características brutas da sazonalidade, talvez em conjunto com uma transformação estabilizadora de variância, tal como o desmatamento ou a deflação. Se você parar neste ponto e prever que a série diferenciada é constante, você tem apenas montado uma caminhada aleatória ou modelo de tendência aleatória. No entanto, a série estacionária pode ainda ter erros autocorrelacionados, sugerindo que algum número de termos AR (p 8805 1) e / ou alguns termos MA (q 8805 1) também são necessários na equação de previsão. O processo de determinar os valores de p, d e q que são melhores para uma dada série temporal será discutido em seções posteriores das notas (cujos links estão no topo desta página), mas uma prévia de alguns dos tipos De modelos não-sazonais ARIMA que são comumente encontrados é dada abaixo. ARIMA (1,0,0) modelo autoregressivo de primeira ordem: se a série é estacionária e autocorrelacionada, talvez possa ser predita como um múltiplo de seu próprio valor anterior, mais uma constante. A equação de previsão neste caso é 8230, que é regressão Y sobre si mesma retardada por um período. Este é um modelo 8220ARIMA (1,0,0) constant8221. Se a média de Y for zero, então o termo constante não seria incluído. Se o coeficiente de inclinação 981 1 for positivo e menor que 1 em magnitude (ele deve ser menor que 1 em magnitude se Y estiver parado), o modelo descreve o comportamento de reversão de média no qual o valor do próximo período deve ser 981 vezes 1 Longe da média como valor deste período. Se 981 1 for negativo, ele prevê o comportamento de reversão de média com alternância de sinais, isto é, também prevê que Y estará abaixo do próximo período médio se estiver acima da média neste período. Em um modelo autorregressivo de segunda ordem (ARIMA (2,0,0)), haveria um termo Y t-2 à direita também, e assim por diante. Dependendo dos sinais e magnitudes dos coeficientes, um modelo ARIMA (2,0,0) poderia descrever um sistema cuja reversão média ocorre de forma sinusoidal oscilante, como o movimento de uma massa sobre uma mola submetida a choques aleatórios . Se a série Y não for estacionária, o modelo mais simples possível para ela é um modelo randômico randômico, que pode ser considerado como um caso limitante de um modelo AR (1) em que o modelo autorregressivo Coeficiente é igual a 1, ou seja, uma série com reversão média infinitamente lenta. A equação de predição para este modelo pode ser escrita como: onde o termo constante é a variação média período-período (ou seja, a deriva a longo prazo) em Y. Este modelo poderia ser montado como um modelo de regressão sem interceptação em que o A primeira diferença de Y é a variável dependente. Uma vez que inclui (apenas) uma diferença não sazonal e um termo constante, é classificada como um modelo de ARIMA (0,1,0) com constante. quot O modelo randômico-sem-desvio seria um ARIMA (0,1, 0) sem constante ARIMA (1,1,0) modelo autoregressivo de primeira ordem diferenciado: Se os erros de um modelo de caminhada aleatória são autocorrelacionados, talvez o problema possa ser corrigido adicionando um lag da variável dependente à equação de predição - Eu Pela regressão da primeira diferença de Y sobre si mesma retardada por um período. Isto resultaria na seguinte equação de predição: que pode ser rearranjada para Este é um modelo autorregressivo de primeira ordem com uma ordem de diferenciação não sazonal e um termo constante - isto é. Um modelo ARIMA (1,1,0). ARIMA (0,1,1) sem suavização exponencial simples constante: Uma outra estratégia para corrigir erros autocorrelacionados em um modelo de caminhada aleatória é sugerida pelo modelo de suavização exponencial simples. Lembre-se que para algumas séries temporais não-estacionárias (por exemplo, as que exibem flutuações barulhentas em torno de uma média de variação lenta), o modelo de caminhada aleatória não funciona tão bem quanto uma média móvel de valores passados. Em outras palavras, ao invés de tomar a observação mais recente como a previsão da próxima observação, é melhor usar uma média das últimas observações para filtrar o ruído e estimar com mais precisão a média local. O modelo de suavização exponencial simples usa uma média móvel exponencialmente ponderada de valores passados ​​para conseguir esse efeito. A equação de predição para o modelo de suavização exponencial simples pode ser escrita em um número de formas matematicamente equivalentes. Uma das quais é a chamada 8220error correction8221, na qual a previsão anterior é ajustada na direção do erro que ela fez: Como e t-1 Y t-1 - 374 t-1 por definição, isso pode ser reescrito como : Que é uma equação de previsão ARIMA (0,1,1) sem constante com 952 1 1 - 945. Isso significa que você pode ajustar uma suavização exponencial simples especificando-a como um modelo ARIMA (0,1,1) sem Constante, eo coeficiente MA (1) estimado corresponde a 1-menos-alfa na fórmula SES. Lembre-se que no modelo SES, a idade média dos dados nas previsões de 1 período antecipado é de 1 945, o que significa que tendem a ficar aquém das tendências ou pontos de viragem em cerca de 1 945 períodos. Segue-se que a média de idade dos dados nas previsões de 1 período de um modelo ARIMA (0,1,1) sem constante é de 1 (1 - 952 1). Assim, por exemplo, se 952 1 0,8, a idade média é 5. Quando 952 1 aproxima-se de 1, o modelo ARIMA (0,1,1) sem constante torna-se uma média móvel de muito longo prazo e como 952 1 Aproxima-se 0 torna-se um modelo randômico-caminhada-sem-deriva. Nos dois modelos anteriores discutidos acima, o problema dos erros autocorrelacionados em um modelo de caminhada aleatória foi fixado de duas maneiras diferentes: adicionando um valor defasado da série diferenciada Para a equação ou adicionando um valor defasado do erro de previsão. Qual abordagem é a melhor Uma regra para esta situação, que será discutida em mais detalhes mais adiante, é que a autocorrelação positiva é geralmente melhor tratada pela adição de um termo AR para o modelo e autocorrelação negativa é geralmente melhor tratada pela adição de um MA termo. Nas séries econômicas e de negócios, a autocorrelação negativa muitas vezes surge como um artefato de diferenciação. Portanto, o modelo ARIMA (0,1,1), no qual a diferenciação é acompanhada por um termo de MA, é mais freqüentemente usado do que um modelo de auto-correlação positiva. Modelo ARIMA (1,1,0). ARIMA (0,1,1) com suavização exponencial simples constante com crescimento: Ao implementar o modelo SES como um modelo ARIMA, você realmente ganha alguma flexibilidade. Em primeiro lugar, o coeficiente MA (1) estimado pode ser negativo. Isto corresponde a um factor de suavização maior do que 1 num modelo SES, o que normalmente não é permitido pelo procedimento de ajustamento do modelo SES. Em segundo lugar, você tem a opção de incluir um termo constante no modelo ARIMA, se desejar, para estimar uma tendência média não-zero. O modelo ARIMA (0,1,1) com constante tem a equação de predição: As previsões de um período de adiantamento deste modelo são qualitativamente semelhantes às do modelo SES, exceto que a trajetória das previsões de longo prazo é tipicamente uma Inclinada (cuja inclinação é igual a mu) em vez de uma linha horizontal. ARIMA (0,2,1) ou (0,2,2) sem suavização exponencial linear constante: Os modelos lineares de suavização exponencial são modelos ARIMA que utilizam duas diferenças não sazonais em conjunto com os termos MA. A segunda diferença de uma série Y não é simplesmente a diferença entre Y e ela mesma retardada por dois períodos, mas sim é a primeira diferença da primeira diferença - i. e. A mudança na mudança de Y no período t. Assim, a segunda diferença de Y no período t é igual a (Y t - Y t-1) - (Y t-1 - Y t-2) Y t - 2Y t-1 Y t-2. Uma segunda diferença de uma função discreta é análoga a uma segunda derivada de uma função contínua: ela mede a quotaccelerationquot ou quotcurvaturequot na função em um dado ponto no tempo. O modelo ARIMA (0,2,2) sem constante prevê que a segunda diferença da série é igual a uma função linear dos dois últimos erros de previsão: que pode ser rearranjada como: onde 952 1 e 952 2 são MA (1) e MA (2) coeficientes. Este é um modelo de suavização exponencial linear geral. Essencialmente o mesmo que Holt8217s modelo, e Brown8217s modelo é um caso especial. Ele usa médias móveis exponencialmente ponderadas para estimar um nível local e uma tendência local na série. As previsões a longo prazo deste modelo convergem para uma linha reta cujo declive depende da tendência média observada no final da série. ARIMA (1,1,2) sem suavização exponencial linear de tendência amortecida constante. Este modelo é ilustrado nos slides acompanhantes nos modelos ARIMA. Ele extrapola a tendência local no final da série, mas aplana-lo em horizontes de previsão mais longos para introduzir uma nota de conservadorismo, uma prática que tem apoio empírico. Veja o artigo sobre "Por que a tendência de amortecimento" trabalha por Gardner e McKenzie e o artigo de "Rule of Gold" de Armstrong et al. para detalhes. É geralmente aconselhável aderir a modelos nos quais pelo menos um de p e q não é maior do que 1, ou seja, não tente encaixar um modelo como ARIMA (2,1,2), uma vez que isto é susceptível de conduzir a sobre-adaptação E quotcommon-factorquot questões que são discutidas em mais detalhes nas notas sobre a estrutura matemática dos modelos ARIMA. Implementação de planilhas: modelos ARIMA como os descritos acima são fáceis de implementar em uma planilha. A equação de predição é simplesmente uma equação linear que se refere a valores passados ​​de séries temporais originais e valores passados ​​dos erros. Assim, você pode configurar uma planilha de previsão ARIMA armazenando os dados na coluna A, a fórmula de previsão na coluna B e os erros (dados menos previsões) na coluna C. A fórmula de previsão em uma célula típica na coluna B seria simplesmente Uma expressão linear que se refere aos valores nas linhas precedentes das colunas A e C, multiplicado pelos apropriados AR ou MA coeficientes armazenados em células em qualquer outro lugar na folha de cálculo. Stata: Análise de Dados e Software Estatístico Nicholas J. Cox, Universidade de Durham, Reino Unido Christopher Baum, Boston College egen, ma () e suas limitações Statarsquos comando mais óbvio para calcular médias móveis é a função ma () de egen. Dada uma expressão, cria uma média móvel - period dessa expressão. Por padrão, é tomado como 3. deve ser ímpar. No entanto, como a entrada manual indica, egen, ma () não pode ser combinado com varlist:. E, por esse motivo, não é aplicável aos dados do painel. Em qualquer caso, ele está fora do conjunto de comandos especificamente escrito para as séries temporais ver séries de tempo para obter detalhes. Abordagens alternativas Para calcular médias móveis para dados de painel, existem pelo menos duas opções. Ambos dependem do conjunto de dados ter sido tsset previamente. Isso vale muito a pena fazer: não só você pode salvar a si mesmo repetidamente especificando variável de painel e variável de tempo, mas Stata se comporta de forma inteligente, dada qualquer lacuna nos dados. 1. Escreva sua própria definição usando generate Usando operadores de séries temporais como L. e F. Dar a definição da média móvel como o argumento para uma declaração de geração. Se você fizer isso, você não estará, naturalmente, limitado às médias móveis ponderadas (não ponderadas) centradas calculadas por egen, ma (). Por exemplo, as médias móveis ponderadas de três períodos seriam dadas por e alguns pesos podem ser facilmente especificados: Você pode, naturalmente, especificar uma expressão como log (myvar) em vez de um nome de variável como myvar. Uma grande vantagem dessa abordagem é que a Stata automaticamente faz a coisa certa para os dados do painel: os valores iniciais e retardatários são elaborados dentro dos painéis, exatamente como a lógica determina que eles devam ser. A desvantagem mais notável é que a linha de comando pode ficar bastante longa se a média móvel envolver vários termos. Outro exemplo é uma média móvel unilateral baseada apenas em valores anteriores. Isso poderia ser útil para gerar uma expectativa adaptativa do que uma variável será baseada puramente em informações até à data: o que alguém poderia prever para o período atual baseado nos últimos quatro valores, usando um esquema de ponderação fixo Especialmente comumente usado com timeseries trimestrais.) 2. Use egen, filter () de SSC Use o filtro de função egen escrito pelo usuário () do pacote egenmore em SSC. No Stata 7 (atualizado após 14 de novembro de 2001), você pode instalar este pacote após o qual a ajuda egenmore aponta para detalhes sobre filter (). Os dois exemplos acima seriam renderizados (nesta comparação, a abordagem de gerar é talvez mais transparente, mas veremos um exemplo do oposto em um momento). Os retornos são um numlist. Leva-se a defasagens negativas: nesse caso -11 se expande para -1 0 1 ou chumbo 1, atraso 0, atraso 1. Os coeficientes, outro número, multiplicam os itens correspondentes retardados ou principais: neste caso, esses itens são F1.myvar . Myvar e L1.myvar. O efeito da opção de normalização é escalar cada coeficiente pela soma dos coeficientes para que o coeficiente (1 1 1) normalize seja equivalente aos coeficientes de 13 13 13 e o coeficiente (1 2 1) normalize seja equivalente aos coeficientes de 14 12 14 Você deve especificar não apenas os atrasos, mas também os coeficientes. Como egen, ma () fornece o caso igualmente ponderado, a razão principal para egen, filter () é suportar o caso desigualmente ponderado, para o qual você deve especificar coeficientes. Poderia também ser dito que obrigar os usuários a especificar coeficientes é uma pequena pressão extra sobre eles para pensar sobre quais coeficientes eles querem. A principal justificativa para pesos iguais é, suponhamos, simplicidade, mas pesos iguais têm propriedades de domínio de frequência ruim, para mencionar apenas uma consideração. O terceiro exemplo acima pode ser qualquer um dos quais é quase tão complicado quanto a abordagem gerar. Há casos em que egen, filter () dá uma formulação mais simples do que gerar. Se você quer um filtro binomial de nove períodos, que os climatologistas acham útil, então parece talvez menos horrível do que, e mais fácil de obter do que, Assim como com a abordagem de geração, egen, filter () funciona corretamente com dados do painel. Na verdade, como dito acima, depende do conjunto de dados ter sido tsset previamente. Uma dica gráfica Depois de calcular suas médias móveis, você provavelmente vai querer olhar para um gráfico. O comando tsgraph escrito pelo usuário é inteligente sobre conjuntos de dados tsset. Instale-o em um Stata 7 atualizado por ssc inst tsgraph. O que sobre subconjunto com se nenhum dos exemplos acima fazer uso de se restrições. Na verdade egen, ma () não permitirá se a ser especificado. Ocasionalmente as pessoas querem usar se ao calcular médias móveis, mas seu uso é um pouco mais complicado do que é normalmente. O que você esperaria de uma média móvel calculada com if. Vamos identificar duas possibilidades: Fraca interpretação: Eu não quero ver nenhum resultado para as observações excluídas. Interpretação forte: Eu nem quero que você use os valores para as observações excluídas. Aqui está um exemplo concreto. Suponha como conseqüência de alguma condição if, as observações 1-42 estão incluídas, mas não as observações 43 sobre. Mas a média móvel de 42 dependerá, entre outras coisas, do valor de observação 43 se a média se estender para trás e para a frente e for de comprimento pelo menos 3, e dependerá também de algumas das observações 44 em diante em algumas circunstâncias. Nossa suposição é que a maioria das pessoas iria para a interpretação fraca, mas se isso está correto, egen, filter () não suporta se. Você sempre pode ignorar o que você donrsquot quer ou mesmo definir valores indesejados para desaparecer depois, usando substituir. Uma nota sobre os resultados faltando nas extremidades da série Como as médias móveis são funções de defasagens e derivações, egen, ma () produz faltando onde não existem os retornos e as derivações, no início e no final da série. Uma opção nomiss força o cálculo de médias móveis mais curtas e não centralizadas para as caudas. Em contraste, nem gerar nem egen, filter () faz, ou permite, nada de especial para evitar resultados em falta. Se algum dos valores necessários para o cálculo estiver faltando, então esse resultado está ausente. Cabe aos usuários decidir se e o que a cirurgia corretiva é necessária para essas observações, presumivelmente depois de olhar para o conjunto de dados e considerar qualquer ciência subjacente que pode ser levado a suportar.

No comments:

Post a Comment